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ABSTRACT

• .~~. Three different forms of congestion of production factors
are defined and analyzed within an axiomatic theory of
production . These forms of congestion are used to charac-
terize a law of variable proportion.
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CONGESTION OF PRODUCTION FACTORS

by

Roif flre and Leif Svensson

1. INTRODUCTION

Examples of production technologies exhibiting congestion in the sense

that if a proper subset of production factors (inputs) are kept fixed,

increases in the others may obstruct output , are frequently found in agri—

culture , transportation and engineering . Despite the apparent dissimilarity

of such production technologies a general axiomatic treatment is offered in

this paper . Three forms of congestion are introduced to distinguish

different strengths. These forms of congestion are related to each other

under production theoretical commonly made assumptions. They are also

analyzed in terms of production concepts such as essentiality, ].imitationality

and null jointness of inputs. In the final section the three forms of

congestion are used in dealing with a law of variable proportions .

A function cP : 1R~ -

~ 

between exogenous inputs (x) and net

output (u) is called a production function if It satisfies the following

axioms stated by Shephard (see [3]).

p.1 •(0) — 0 , and ~(x) > 0 for some x > 0

•.2 Q (x) is finite for H x H  bounded .

•.3  $ Ø~ 
. x) ~ ~~(x) if A > I

~.4 For •(X • x) > 0 , • x) -‘. -
~~~~ ~~~~ 

A -
~ 

+cO

•.5 $(x) is upper semi—continuous In x

•.6 The efficient subset E(u) : — {x I •(x) > u , y < x  
~~~ 

$(y) < u}

is bounded for u > 0 and E(O) : — 0

means x1~~~O , i — l ,2, ..., n ,x # O .

—
~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~ - _____________ A
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2

Congestion is next analyzed within the framework $.l — $.6 for

a production technology.
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2. CONGESTION

For the purpose of distinguishing between different strengths of

congestion of production factors, three forms are defined and discussed

in this paper, namely:

Definition 1:

A factor combination {v
k÷l,

v
k+2

, . . .,  v }  , 0 < k < n , is output—

limitational (OL) congested at x0 c , if $(x° + y) ~~ $(x°) , for

all y C D(v 1,v2, ‘~k~ 
(2)

• Definition 2:

A factor combination {v
~~l,

vk+2 I ...,  v )  , 0 < k < n , is eonotone

output-limitational (MDL) congestod at x
0 

c , if •(x° + y ’’) <

$(x° + y’) , for all y ’’ , y’ c D (v 1, v 2, . . .,  v~) with y ’’ > y’ .

Definition 3:

A factor combination {vk+l,v~~2, 
. . .,  v }  , 0 < k c a , is output—

prohibitive (OP) congested at x0 c 1R~ , if $(x ° + y) — 0 , for all

y C D(v1.v2, . . .,  vk)

Clearly if a factor combination {v~~1,v~~2, . ..,  v )  is OP—

congested at x c it is MOL—congested at that input combination.

Also if {v.
~+l,

vk+2, ..., v }  is MOL—congested at x c it is OL—

congested there. In general, however, the converse is not true, hence

• the three definitions distinguish different strength of congestion. The

following two examples of production functions clarify this.

(2)D(vl,v2, ..., vk) :_ {x C R ~~I x > O~~ xv
_ O I i _ l ,2, ...I k}.

____________ ~~~~~~~~~~~~~~~~~~~~~ 1



I
(1) +(x) : • am {xl,12 11 

— 12 1)

(2) •(x) : — mm {x1,x2}

In Example 1, the production factor 12 is OL—congested at (11,12) (1,1)

but it is not MOL—congested at that point , since for y ’’ — (0 ,2)

y’ — (0 ,1) , p (x + y ’’) — 0 < $(x + y ’) — 1 •

In the second example with x1 = x2 — 2 it is clear that x2

is MOL—congested at (2 ,2) but not OP—congested .

— On the other hand , if the production function exhibits strong

disposability of inputs , (i.e., x ’ > x ~~~~ •(z’) > P (x)) , then in definitions

1 and 2 , the inequality sign may be replaced by equality and then obviously

• MDL— and OL—congestion coincide.

To continue , consider the following subsets of factors of production

in E~~ :

A (OL) : — C {v k+l,vk+2) . . .,  v~ } is OL—congested at

A (MOL ) : C i~~ I ~~k+l~
Vk+2~ ~~~ “n

y is MOL—congested at

and

A (OP) : _ {x  c i~~ {v
k+1,vk+2~ 

. . .,  v }  is OP—congested at

It is clear from the above discussion that A(OP ) C A (MDL ) C A (OL)

and that A (OL) — A (MOL) : = {x I + (x) — $(x + y) for all

y c D(v 1,v2, ..., vi)) whenever the production function • exhibits

• 
- 

strong disposability of inputs. Also note that under this disposability

condition , A (OP) may be nonempty with A (OL) # A (OP) . The following

production f unction is an illustration of this case.

1~ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _  

_ _ _ _L ~~
— ~~~~~ - •~~~ 

- 
—

1.~~~~~S.. - — 
— _—-—_ --—a— -_ _• —...-



(3) $ (x) : — mm {aax {O ,xl 
— a},1

2
} , a > 0

- Clearly the production function (3) exhibits strong disposability

of inputs and for a — 1 , the input vector (x1,12) — (1,1) c A (OP)

with the second factor OP—congested . (11,12) — (3 ,1) belongs to

A (OL) with x2 OL—congested but (3 ,1) ~ A(OP) i.e., A(OP) is

noneapty with A(OL) ~& A(OP)

For the cage where only one factor is congested (i.e., k — n — 1)

it can be shown that for a quasi—concave production funct ion •
A (OL) - A (MDL )

Proposition 1:

Let the production function $ be quasi—concave . If D(v 1, v2, ...,

• is one dimensional (i.e., D(v 1,v 2, ..., v~) = D(\ 1,v2, “ ‘  “n—l a

. then A(OL ) - A (MOL)

• Proof:

• Since A (MDL) C A (OL) it is sufficient to assume that A (OL ) is

nonempty and to prove that A(Ot ) C A (MOL )  . Hence let X
0 

C A(OL ) and

let y ’1 , y ’ ~~ D(v 1,v2, ..., v 1
) with y ’ c y ’’ . Then since

D(V 11v2, • •
~~~~~ 

Vn_ i ) has dimension one and y ’ < y” , + y ’ lies on

the line segment between x~ and x0 + y ” . Hence by quasi—concavity,

+ y ’) > mm {$(x°),$(x° + y ’’)} . Thus , since $(x°) > •(~~O + 
~~~

t )

(x° £ A (OL)) , it follows that $(x0 + y’) > 4u (x
o + y ’’) i.e.,

• . ~~
0 

£ A (IIOL) . Q.E.D.

• Unfortunately, as illustrated below, this proposition does not

hold when there are more than one congested factor of production.

I 
____________________ ________— . —~-~~~~~~~~~~~~~ . i t ea - -—-S • • • 
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6

(4) $(x) : — miii {x 1, max {O ,x2 — x3 
— x1

})

I
• The production function (4) is quasi—concave and it is next seen

- that the factor combination {x2,x3} is OL—congested, at

• 
(x1,x2, x3) — (1,3,1) but not MOL—congested there . From (4) it follows

that,

I ~~~1,3 + y2, l + v3) = mm {1, max {O ,l + y2 - y3)} < ~~l ,3,l) - 1

• 
for all y1 

> 0 , I — 2 ,3 . Hence {x 2,x3} is OL—congested at the

input vector (1,3,1) . However to see that (x2, x 3) is not MDL —

congested there, choose (1,3,2) and (1,4,2) giving 4(1,3,2) 0

and ~(l ,4,2) = 1

I

_____________________________ ____________________________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. PROPERTIES OF OL—, MDL— AND OP—CONGESTION

In this section OL— , MDL— and OP—congestion are further investigated

and these notions are related to other production theoretical concepts.

A factor combination {v1,v2, . . .,  v~} , 1 < k < n , is termed

essential if 4(y) — 0 for all y c D(v1,v2, .. .,  v~) . Essentiality

is related to the set A(OL ) by:

Proposition 2:

A factor combination {v 1, v2,  . ..,  V~~) , 1 < k  < ii , is essential

if and only if 0 c A(OL )

Proof:

Assume 0 c A(OL ) then •(0 + y) < 4(0) for all y C D(v1,v2,  a . . ,  v
k

)

and by axiom 4.1 (i.e., 4(0) — 0) the factor combination {v 1, v2 , ...,  v~ }

is essential . Conversely, assume {v 1,v 2 , . . .,  v~ } essential , then by

axiom p .1, 4(0 + y) < 4 (0) — 0 for all y C D(v 1,v2,  .. . ,  v~) and

O C A (OL) . Q.E.D.

The notion of weak limitationality, stating that a factor combination

{v
1,v2, . . .,  V~~} , 1 < k < n , is weakly limitational if there exists a

positive bound (x~ ,x° , . . ,  x° 
‘
~ on ~v1,v2,  .., vk

) such that

•(x) is bounded for all x c I (x ~~~x~~~ .. .,  ) < ~~~~~~~~~~~~~ .. .,

• was introduced into economic theory of production by R. W. Shephard (see (21).

Re proved that a factor combination is weakly limitational If and only if

it is essential. In this light, Proposition 2 gives an alternative

characterization of weak limitationality .

_______________________________
~~~~~~~~~~~~~~

--
~~~~~~~~~~~~~~~

-

-
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~:i I~~~
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A further characterization of the condition It o £ A(OL)” and hence

for weak limitationality is next given for quasi—concave production

• functions , namely:

Proposition 3:

If the production function $ is quasi—concave , 0 c A(OL) if

and only if A(OL) is nonempty.

Proof:

Assume x0 c A(OL ) , if x
0 

= 0 then there is nothing to prove so

let x0 > 0 . x0 c A (OL ) implies 4(x°) > $(x° + y) for all

y e D(v1,v2, ..., vk) and by property $.3 of the production function,

4(x°) > $(A • x
0 
+ A • y) , A c [0 ,1) . Define y° — A . y/(]. — A)

for A c (0 ,1) , then y° c D(v1,v2, . . .,  vk) and by quasi—concavity,

> ~ x
0 
+ A ~ y) — $(A • x0 + (1 — A) • y°) > miii

Thus ,(~~0) > •(y°) . Since y was arbitrarily chosen , ,(x
0
) >

for all y° C D(v 11v2, . . .,  v~ ) and by property 4 .4 , •(y°) — 0 for

all y° c D(v1,v2, ..., v~ ) , implying that $(O + y°) > •(y°) i.e.,

0 £ A(OL) . Q.E.D.

As the following counterexampie shows, Proposition 3 does not hold

if the production function is not absumed quasi—concave. Let

• . X
l 

for x £ ((11,12
) I x1 0 x2 — 0)

(5) $(x) : — x2 for x c {(x1,x2) X
l 

— 0 , 12 ~

0 otherwise

~ 

~~
.•.— - 

________________________ 
______________________________-_~~

.
~~~•Ii 

rr~~—~~ -- 
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_--~~~~~~~~~~- 
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• then (5) is a production function but it is not quasi—concave. The

input x2 is clearly OL—congested at (x1,z2) (1,1) , but not at

(0,0) showing that Proposition 3 does not hold in general without the

• assumption of quasi—concavity.

As for MDL— and OP—congestion, note that

A(OP) — A (MOL) fl .
1(0) — A(OL) fl $

_1
(O)

where ,
_1
(O) : — C 1 I $(x) — o} . Consequently,

OeA(OP ) ~ OcA(MO L) ~ OcA(OL)

From the last of the above two expressions it is clear that in Propositions

2 and 3, A(OL) can be replaced by A(MOL ) or A(OP)

For the special case of a homothetic production function it is

next shown that the set of OL—congested input vectors is a cone, if

there are such input vectors. Thus assume x0 c A (OL) , then

P(G(x° + y)) c F(G(z°)) for all y C D(v 1,v2, ..., v~) , where

$(z) : — F(G(x)) is a homothetic production function with

• x) — A • G(x) , A > 0 . Prom the homogeneity of the case function

C , it is clear that when x0 C A (OL) , G(A • x0 + A . y) < G(X . x°) ,

and since D(v1,v2, 
~~ 

v
k
) is a cone, F(G(A • x

0 
+ j v) )  < F(G(A x°)) ,

A > 0 and ~ C D(v1,v2, ... , v
k
) implying that A • x

0 c A (OL) or

that A (OL) is a cone.

Similar proofs apply for the sets A ØI3L) and A(OP) . Thus one

has: 

---—.- - — -. 

- • •~~~~~ - •
• 

--. • - -  - 

_ -. _ • • - - - .-• - •- -- -~~~ _-- -~~~~~~~~ -
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r Propos ition 4 :

If the production function 4 is homothetic and A(OL) [A(HOL),A(OP))

is not empty, A (OL) (A(MOL),A(OP)J is a cone.

‘C

I 
_ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  
_ _ _ _  - —

—— .- —_- —_— 
—— — - - -.—.——. -— . •— — — •— •—-—•.—.—-—- -—- ~ ___~~~..fr ~~~~ •
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4. A PARTICULA1 RESULT FOR OP-CONGESTION

The concept of jointness between production factors was introduced

• in (1] to express the idea that for a positive output rate, certain

requirements may have to be placed on the input mixes. In the same paper

jountness was related to a form of congestion. Here a characterization

of jountness in terms of OP-congestion is discussed and the result is

compared to some of those found in El]. For this reason define:

Definition 4:

A factor combination (V
~~l,

Vk+2, ~~~~~~ 
, 1 < k < ii , is null

joint with {v 1,v2,  ..., v~ } if and only if X C C(l)~
3
~ ,

(x ,x , ..., x — o implies (x ,x , . ..,  x — 0
~ V

1 
V

2 V
kJ \ ‘~k+1 ‘~k+2 ‘

~n/

The restrictions unforced on A(OP) by null jointness for a

• : quasi—concave production function is clear from:

Proposition 5:

For a quasi—concave production function $ , a factor combination

(vk+l,vk+2, ..., v }  , 1 < k < ii , is null joint with {v1,v2, ..., V~~~}

if and only if there is an input vector x0 £ A(OP) such that 4(z°) > 0

for some : — x0 — y , y £ D(v1,v2, •. .,  Vk) and

{tx I M x l i  l i x 0 I I } r ~~x I x ~ , (x~~~x~~ ...,  —

(~
o ,x0 , • . . ,  C A (OP )

~ V1 
V

2

• 
~
3
~c(I5 is th. closed cone spanned_by the input vectors yielding the

output rate u — 1 , formally, C(lT : — {x f x — A • y , A > 0 , •(y) — 1)
Note that by property •.4 of the production function, C(1) — C(u) , for
u ’O .

-
~~~~~~~~~~~~~~~~~~~~~~ 

_ _  _ _ _ _ _ _  

H
~~~~~~~~~ T~~ T T  ~~~ii



• -_--- - -_- ------ -----•• - •-- - -_- ----------,~~~~~~~~~~~ -—.--•-

• • -  -——— • _•— _ -~~ -_ • -

12

• 
Proposit ion 3 shows that if A(OP) nonempty, 0 £ A(OP) and thus,

• 

•

~ 
D(V1,V 2, ..., V

k
) C A(OP) . This together with property 4.3 of the

I - production function, implies that in Proposition 5, 4(x) = 0 for all

I M x li > I I x 0 i i } r ~ {x I x > 0  , ~~~~~~~~ . . .,

~~~~~~~~~~~~~ ..., v )}} 
Thus the relationship between Proposition 5 and

• the characterization of null jointness found in [1], namely:

Proposition 6:

For a quasi—concave production function 4 , a factor combination
..., v }  , 1 < k < ii , is null joint with {:

1
,v2, ..., vk}

if and only if for each positive bound lxv ,X , . .., x j on

- 
\ i  2

• (V ,v2, ..., v } there is a 6 > 0 such that for all xc~~{x I (l x i i > 6}r~
I x 0 , (x~~.x~~ ..., x~~

) 
~~ (x

0
tx~~~’ .., )}} . 4(x) — 0

• is clear.

. 
In proving Proposition 5, the following lemma is of use:

Lemma:

Let KC1 ( , 0 c K be a closed cone such that the intersection

• x r ~ D(v1,v2, ..., V
k

) , 1 < k < ii , is empty. Then for each positive

bound (~
° ,x° , ..., x0 ~ on the subvector (v ,v , . . .,  v ) , the

\
V
1 

V
2 

V
kJ

set I( rJx I x > 0 , ,x , •. . , x < (x° ,x
0 , ...,( — \ V1 V

2 
V
kJ — V

1 
V
2I is compact.

Proof:

• 
. Let (~ ,x~ , ..., x be any positive bound on the subvector

• 
• \ l 2  k/

... , V
k
) , 1 < k < n , and define 8° : — K r ~-~x I x > 0 ,

(x~~ z . ..., x~~) 
< 
~~~~~~~ ~ 

. The set S is closed as

L. 

________— ______—•

- —— , — -
~~
--

~
--.-
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an intersection of two closed sets. Thus we only have to show that it

is bounded. Assume conversely that there is an infinite sequence

{x’) C S° such that ix
t I I • + as £ -

~ 4” . Since by assumption

the subvector ,x , .. ., x~ 
) 

is bounded, Ix~ ,x~ , ... , x~ i (
\ l  2 k k+l k+2 ii

must under these conditions tend to 4” as & -
~ +“ . Next, define

the sequence of rays : — (A • xL I A > O} . Since (x~ 
,
~ 

...
~~

• 

- 

- 
1 2  k

is bounded , lix rt 
C D(v 1,v2, ..., v~ ) , contradicting the condition

KC~D(v1,v2, .. .,  v~) empty. Hence, S° is a compact subset of

and since the bound on (x ,x , .... z~, was arbitrarily chosen
\

V
1 

V
2

the lemma is proved. - Q.E.D.

To prove Proposition 5, assume that the factor combination

... , v )  , 1 < k < ii , is null joint with {v1,v2, .. ., V~~)

then C(l) (~D(V1,v2, ... , v~ ) is empt y (see Proposi t ion 1 in [1]).

From the second part of property 4.1 of the production function, there

• is z
0 

C C(1) such that •(z°) > 0 . Now, C(l) is a closed cone with

0 £ C(l) and hence the conditions of the lemma are satisfied. Consequently

there is an input vector x0 : — z0 + y for y £ D(v ,v2, ..., v
k

) such

that 4(x) — 0 for all x £ ~{x I l i x il > Hx°IJ ) (~ ~x x > 0

,x , .. ., x — (~
o 

,X°
~~, ..., , provun g~ the first part of

\ v1 V
2 

Vk/ \ V
1 

V
2

Proposition 5.

To prove the converse, assume there is an input vector x0 C A(OP)

such that $(z°) > 0 for some : — x0 — y , y e D(V1,V2, .. ., vk)

and {(x I I x i I > I z°I I } r~ x > o , (x~ ,x~~, • •.,  x
~~) 

—

(~° ,xo , .. ., x0 CA(oP) . From Proposition 3 and property •.3 of the
~ 
V
1 

V
2 

Vk/JJ

_ __ _  
~--- - •~ • -- -~~~~-~~~

‘

~~~~~~~ 
•~~•• ~~~~~~ _ _ _ _ _
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• production function, 4(x) — 0 for all xc {(x I lI x il > J (x °(~ ) r~
{x I x ~ o , 

~~~~~~~~ 
.. ., x~~

) ~ (x:~~
x
~~ •.., . Clearly,

since CO.) — C($(z°)) is a closed convex cone, C(l) fl D(V1,V2, ...,

is empty and hence by Proposition 1 in [1], the factor combination

... , v }  is null joint with {v1,v2, •. .,  V~~} , proving
the proposition.

Note that quasi—concavity is not used in the first part of the

proof of Proposition 5, but as the following example (found in [1])

shows it is essential for the second.

(6) $(x1,x2
) : = mm max {O ,x2 —

This production func tion is clearly not quasi—concave but it satisfies

the conditions for the second part of the proof, i.e., 4(1,2) > 0

4(1 + yi,2) — 0 for all y
1 

> 4 . However as shown in [1], x1 is

not null joint with x2 .

Also note that the condition •(z°) > 0 for some z0 : — x0 — y ,
y c D(v 1, v2, •..,  v~) is essential for the second part of the proof.

Example (3) above shows this.

• Finally, as the next example shows, the condition, ~{x li x )) > I l x °l I ) r~
x > o , (x ,x , •. .,  x — (~° ,x~ , ... , x0 

\~~CA(oP) is also— \ V1 V
2 

V
k/ \ V1 V

2

essential for the second part of the proof.

mm (x1,x2
) for x c D(3)

(7) •(x 1, x2,x3) : —

0 otherwise.

— .~~~
—,-•-— -.-- ~

------ -• 
~~~~

----—--- • — • - -  - - • - - ----
k .  ~~~~~~~~~~

-- ---- ~~ —- - 
~~~~~—~~---~~- ___,__ —~~ —
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This production function is quasi—concave. However, 4(1,1,0) — 1

and 4(1,1,1) — 0 , i.e., it does not meet the above requirement.

Consequently the factor combination {x1,x2} is not null joint with

as would have been the case if in addition the above condition was

met.

3

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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5• A LAW OF VARIABLE PROPORTION

Consider the following illustration of a two factors production

function $(x1,x2) , where the first factor is kept constant while the

second may vary.

(1) (2) (3) 2

Pour phases are distinguished. The first (1) when output is in—

• creasing, the second (2) where It reaches its maximum and the third when

output decreases with increases of x2 and finally the fourth (4) when

t output is null.

Over the four regions the factor proportion (x1/x2) is changing

and production variation like this has become known as a law of variable

proportion.

In relation to the above forms of congestion and Proposition 5,

phases (2), (3) and (4) are of interest . Note that in Proposition 5,

may be chosen so that $(z°) — max ~+(z) I X C (x I l ixi l ~ I I x ° I I } f l
.~z I x ~~0 ,(x ,x , ...,x ~~~~~~~~~~~~~ •.., x0 \ ~~~ , since the

\ Vl 
V
2 Vk/ \ Vj V

2

production function is upper semi—continuous (property $ .5) . Also since

__________________________________________________________________________
— ~~ .—— - -— -±- —• ~~~~~~~~~~~~~~~~~~~~~ —fl_-cA -
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4(x) — 0  for all x C {{x I l ix I l  > I Ix °Il}r’l{x I x > o  , (x~~ x~~ X~~) 
—

jx° ,x° , ... , x0 , both phase (2) and (4) are described in Proposition 5.
\

Vl V
2 

Vk/j~
I 0

• 
•~ Consequently, if {x I 4(x) — $(z )) is contained in A(NDL) a law of

variable proportion is given. Formally:

Definition 5:

A law of variable proportion is defined for the factor combination

{ V1,V2, ... , v~ ) , 1 < k -c n , if there is a x0 c A(OP) such that

- • 4(2
0
) > 0 , where 4(2

0
) : — max {{.(x) I l I x i l ~ IIx°ii)fl ~x i x > 0

(x~ 
,x~ , ..•, x~ ) — (~ ,x , .. ., x )}} and (x I 4(x) — $(z°)} C AOI~L)

and whe:e {{x I lx i i  > Ix°II} r~ I x  o , (x~~~
z
~~~ 

... , x )  -

(~
o ,x0 , ..., x~ ~~~C A(OP)

~~~~ V
2 k/fl

From Proposition 5 the following corollary is obvious:

Corollary 1:

Let the production function 4 be quasi—concave and A(OL) — AOIOL )  ,

then there is a law of variable proportion for the factor combination

(V1,V2, •.., v~} , 1 c k -c n , if and only if the factor combination

.. ., v }  is null joint with {v1,v2, ... , V~~}

As an I ediate consequence of this corollary and Proposition 1

one has:

Corollary 2:

Let the production function $ be quasi—concave and D(V
1
,V2, ... , v~)

be one dimensional , then there is a law of variable proportion for the

factor combination (v1,v2, ... , v~ } , 1 k-c u , if and only if the

factor combination (V~~~1IV~~~2, ..., v~} is null joint with (v1,v2, ... , v~)

• .— ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~ • .
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